Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zootaxa ; 5213(4): 301-335, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37044933

RESUMO

The history of colonization and dispersal of fauna among deep-sea chemosynthetic ecosystems remains enigmatic and poorly understood. The distribution of squat lobsters of the genus Munidopsis Whiteaves, 1874 can be influenced by the rich organic matter and associated organism communities of chemosynthetic ecosystems. The present work analyzed the molecular relationships and morphology of individuals from different populations of Munidopsis exuta Macpherson & Segonzac, 2005 and M. geyeri Pequegnat & Pequegnat, 1970 in such ecosystems along the Atlantic Equatorial Belt, including the Chapopote Knoll, in the southern Gulf of Mexico. Munidopsis geyeri is re-described based on the present findings and reference to the literature. This analysis documented the genetic distances, as well as range of variation in the diagnostic characters that support the separation of M. exuta and M. geyeri. Our results confirm that the two species coexist in seep ecosystems and have an amphi-Atlantic distribution.


Assuntos
Anomuros , Ecossistema , Animais , Golfo do México
2.
PLoS One ; 15(4): e0231678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294128

RESUMO

The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them. These baseline surface isoscapes will be useful for accessing future environmental impacts. We also examined the region for influence of hydrocarbon deposition in the sedimentary record that might be associated with hydrocarbon recovery, spillage and seepage, as was found in the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) oil spill in 2010. In 1979, the sGoM experienced a major oil spill, Ixtoc 1. Surface sediment δ13C values ranged from -22.4‰ to -19.9‰, while Δ14C values ranged from -337.1‰ to -69.2‰. Sediment δ15N values ranged from 2.8‰ to 7.2‰, while the %C on a carbonate-free basis ranged in value of 0.65% to 3.89% and %N ranged in value of 0.09% to 0.49%. Spatial trends for δ13C and Δ14C were driven by water depth and distance from the coastline, while spatial trends for δ15N were driven by location (latitude and longitude). Location and distance from the coastline were significantly correlated with %C and %N. At depth in two of twenty (10%) core profiles, we found negative δ13C and Δ14C excursions from baseline values in bulk sedimentary organic material, consistent with either oil-residue deposition or terrestrial inputs, but likely the latter. We then used 210Pb dating on those two profiles to determine the time in which the excursion-containing horizons were deposited. Despite the large spill in 1979, no evidence of hydrocarbon residue remained in the sediments from this specific time period.


Assuntos
Radioisótopos de Carbono/análise , Monitoramento Ambiental/estatística & dados numéricos , Sedimentos Geológicos/análise , Datação Radiométrica/estatística & dados numéricos , Isótopos de Carbono/análise , Golfo do México , Radioisótopos de Chumbo/análise , Nitrogênio/análise
3.
PLoS One ; 11(9): e0162263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683216

RESUMO

In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.

4.
Biofouling ; 31(5): 405-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26087877

RESUMO

Corrosion and biofouling phenomena of cast iron and brass were evaluated under natural conditions to determine the degradation process of archeological artifacts. Field exposure studies of experimental materials were conducted over 15 months at an offshore position in the sea of Campeche in the Gulf of Mexico. Corrosion was determined by gravimetric measurements. The community structure of the benthic assemblage inhabiting the surfaces of both materials was evaluated. A total of 53 species was identified. The community in both cases was composed of a small number of species. Encrusting, attached and erect life forms were dominant on iron. Attached life forms were dominant on brass. Biofouling produced a decrease in the weight loss measurements of cast iron samples. Biofouling provided a beneficial factor for in situ preservation of iron archeological artifacts in wreck sites.


Assuntos
Arqueologia/métodos , Incrustação Biológica , Metais/química , Corrosão , Golfo do México , México
6.
Rev. biol. trop ; 61(4): 1681-1720, oct.-dic. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-703922

RESUMO

The order Amphipoda is one of the most diverse within Peracarids, and comprises 6 950 described marine species. Amphipod research in the Caribbean Sea began in the late 1 800s, but has increased significantly since 1 980. In this study, we analized the amphipod biodiversity (Caprellidea, Gammaridea, Hyperiidea, and Ingolfiellidea) of the Caribbean Sea. For this, we compiled available data on species diversity of marine amphipods (data bases: WoRMS and OBIS and published species lists) into a comprehensive taxonomic list by country for the ecoregions of the Caribbean. Additionally, we analized the relative contribution of each country to regional diversity and the rate of discovery of new species. The Caribbean amphipod fauna is composed of 535 species within 236 genera and 73 families for the higher taxon. The Western Caribbean ecoregion holds the largest diversity (282 species), while the Eastern Caribbean recorded the lowest one (73). Mexico and Venezuela recorded the largest number of species with 266 and 206, respectively. Twelve countries had less than 50 species. The richest suborder is the Gammaridea with 381 species followed by the suborder Hyperiidea with 116. From the total of 535 amphipod species reported for the Caribbean region, 218 have the Caribbean as the holotype locality, and 132 are endemic (about 25% of the total). Areas of higher diversity seem to be concentrated along the Mexican Caribbean, Cuba and the Northern coast of South America (Venezuela-Colombia); however, such pattern is most likely reflecting local collection efforts and taxonomic expertise rather than actual distribution. Knowledge of amphipod species is mostly limited to shallow, near-shore waters, with little information available on the deep sea fauna. Regional research priorities for this group should be focused on completing shallow water coastal inventories of species in Central America and the Greater and Lesser Antilles. In addition, sampling the deep sea ecosystems should follow along with other particular habitats such as anchialine cave systems. It is also neccessary to increase ecological research efforts, mainly in some speciose suborders, including the Caprellidea and Hyperiidea, known to exhibit high diversity in other tropical localities. Rev. Biol. Trop. 61 (4): 1681-1720. Epub 2013 December 01.


El orden Amphipoda es uno de los más diversos dentro de los Peracáridos. Las investigaciones sobre este orden en el Mar Caribe se iniciaron a finales de los años 1800, incrementándose significativamente a partir de 1980. En este estudio se analizó la biodiversidad de los anfípodos (Caprellidea, Gammaridea, Hyperiidea e Ingolfiellidea) en el Mar Caribe, compilándose los registros de especies citadas en las diversas ecorregiones del área, tanto en publicaciones como a través de bases de datos (WoRMS y OBIS). Se listan un total de 535 especies pertenecientes a 236 géneros y 73 familias. La ecorregión del Caribe Occidental presentó la mayor riqueza específica (282), mientras que el Caribe Oriental presentó el menor valor (73). México y Venezuela presentaron el mayor número de especies registradas (266 y 206, respectivamente), mientras que doce países presentaron menos de 50. Los Gammaridea fueron el grupo más diverso con 387 especies, seguido de los Hyperiidea (116 especies). Hasta el presente, se han descrito 218 especies nuevas en aguas del Caribe, de las cuales 132 son endémicas. Las áreas con mayor diversidad de anfípodos se concentraron a lo largo del caribe Mexicano, Cuba y la costa norte de Sur-América (Venezuela-Colombia); sin embargo, este patron refleja más bien un mayor esfuerzo en la recoleccion de estos organismos y una mayor experticia taxonómica, que un patron específico de distribución del grupo. En general, el conocimiento del grupo se limita a las aguas someras, con muy poca información sobre zonas profundas. En este sentido, las prioridades de investigación regional en este grupo, debe enfocar un mayor esfuerzo en la costa de Centro América y las Antillas Mayores y Menores. Así mismo, es necesario aumentar las recolecciones en aguas profundas y otros ecosistemas particulares como los anquialinos. Por último, es importante aumentar las investigaciones taxonómicas y ecológicas de los taxones que presentan mayor diversidad.


Assuntos
Animais , Anfípodes/classificação , Biodiversidade , Oceano Atlântico , Região do Caribe
7.
Astrobiology ; 13(6): 550-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23742231

RESUMO

On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.


Assuntos
Metano/metabolismo , Planetas , Modelos Teóricos
8.
Rev Biol Trop ; 61(4): 1681-720, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24432528

RESUMO

The order Amphipoda is one of the most diverse within Peracarids, and comprises 6950 described marine species. Amphipod research in the Caribbean Sea began in the late 1800s, but has increased significantly since 1980. In this study, we analized the amphipod biodiversity (Caprellidea, Gammaridea, Hyperiidea, and Ingolfiellidea) of the Caribbean Sea. For this, we compiled available data on species diversity of marine amphipods (data bases: WoRMS and OBIS and published species lists) into a comprehensive taxonomic list by country for the ecoregions of the Caribbean. Additionally, we analized the relative contribution of each country to regional diversity and the rate of discovery of new species. The Caribbean amphipod fauna is composed of 535 species within 236 genera and 73 families for the higher taxon. The Western Caribbean ecoregion holds the largest diversity (282 species), while the Eastern Caribbean recorded the lowest one (73). Mexico and Venezuela recorded the largest number of species with 266 and 206, respectively. Twelve countries had less than 50 species. The richest suborder is the Gammaridea with 381 species followed by the suborder Hyperiidea with 116. From the total of 535 amphipod species reported for the Caribbean region, 218 have the Caribbean as the holotype locality, and 132 are endemic (about 25% of the total). Areas of higher diversity seem to be concentrated along the Mexican Caribbean, Cuba and the Northern coast of South America (Venezuela-Colombia); however, such pattern is most likely reflecting local collection efforts and taxonomic expertise rather than actual distribution. Knowledge of amphipod species is mostly limited to shallow, near-shore waters, with little infonnation available on the deep sea fauna. Regional research priorities for this group should be focused on completing shallow water coastal inventories of species in Central America and the Greater and Lesser Antilles. In addition, sampling the deep sea ecosystems should follow along with other particular habitats such as anchialine cave systems. It is also neccessary to increase ecological research efforts, mainly in some speciose suborders, including the Caprellidea and Hyperiidea, known to exhibit high diversity in other tropical localities.


Assuntos
Anfípodes/classificação , Biodiversidade , Animais , Oceano Atlântico , Região do Caribe
9.
PLoS One ; 5(8): e11916, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20689856

RESUMO

This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa.


Assuntos
Biodiversidade , Animais , Região do Caribe , Classificação , Espécies em Perigo de Extinção/estatística & dados numéricos , Oceanos e Mares
10.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209928

RESUMO

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Assuntos
Biomassa , Biologia Marinha/métodos , Algoritmos , Animais , Inteligência Artificial , Biodiversidade , Carbono/química , Biologia Computacional/métodos , Ecossistema , Modelos Biológicos , Oceanos e Mares , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...